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1. Introduction

In 1998, at the QCD workshop in Paris, Rolf Baier asked me whether jets could be mea-
sured in Au+Au collisions because he had a prediction of a QCD medium-effect (energy loss via
soft gluon radiation induced by multiple scattering [1]) on color-charged partons traversing a hot-
dense-medium composed of screened color-charges [2]. I told him [3] that there was a general
consensus [4] that for Au+Au central collisions at

�
sNN � 200 GeV, leading particles are the only

way to find jets, because in one unit of the nominal jet-finding cone, ∆r �
�

�∆η�2 ��∆φ�2, there
is an estimated π∆r2� 1

2π
dET
dη � 375 GeV of energy !(!) The good news was that hard-scattering

in p-p collisions was originally observed by the method of leading particles and that these tech-
niques could be used to study hard-scattering and jets in Au+Au collisions. In fact, in several
recent talks [5, 6, 7] and in talks from earlier years [3, 8], some as long ago as 1979 [9], I have been
on record describing “How everything you want to know about jets can be found using 2-particle
correlations”. This past year, I had to soften the statement to almost everything because we found
by explicit calculation in PHENIX [10] that the two-particle opposite-side correlation is actually
quite insensitive to the fragmentation function—overturning a belief dating from the seminal paper
of Feynman, Field and Fox in 1977 [11]. However, we also found that the opposite-side correlation
function is sensitive to the ratio of the transverse momentum of the away-side jet ( p̂Ta ) to that of
the trigger-side jet ( p̂Tt ) and thus provides a way to measure the relative energy loss of the two jets
from a hard-scattering which escape from the medium in an A+A collision.

2. Status of theory and experiment, circa 1982

Hard-scattering was visible both at the ISR and at FNAL fixed-target-energies via inclu-
sive single particle production at large pT � 2-3 GeV/c [12]. Scaling and dimensional argu-
ments [13, 14, 15, 16] for plotting data revealed the systematics and underlying physics. The
theorists had the basic underlying physics correct; but many (inconvenient) details remained to be
worked out, several by experiment. The transverse momentum imbalance of outgoing parton-pairs,
the “kT -effect", was discovered by experiment [17, 18], and clarified by Feynman and collabora-
tors [11]. The first modern QCD calculation and prediction for high pT single particle inclusive
cross sections, including non-scaling and initial state radiation was done in 1978, by Jeff Owens
and collaborators [19] under the assumption that high pT particles are produced from states with
two roughly back-to-back jets which are the result of scattering of constituents of the nucleons
(partons).

The overall p-p hard-scattering cross section in “leading logarithm” pQCD [20] is the sum
over parton reactions a� b� c� d (e.g. g� q� g� q) at parton-parton center-of-mass (c.m.)
energy

�
ŝ:

d3σ
dx1dx2d cosθ�

�
sd3σ

dŝdŷd cosθ�
�

1
s∑ab

fa�x1� fb�x2�
πα2

s �Q
2�

2x1x2
Σab�cosθ�� (2.1)

where fa�x1�, fb�x2�, are parton distribution functions, the differential probabilities for partons a
and b to carry momentum fractions x1 and x2 of their respective protons (e.g. u�x2�), and where θ�

is the scattering angle in the parton-parton c.m. system. The parton-parton c.m. energy squared
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is ŝ � x1x2s, where
�
s is the c.m. energy of the p-p collision. The parton-parton c.m. system

moves with rapidity ŷ� 1�2ln�x1�x2� in the p-p c.m. system. The quantities fa�x1� and fb�x2�, the
“number” distributions of the constituents, are related (for the electrically charged quarks) to the
structure functions measured in Deeply Inelastic lepton-hadron Scattering (DIS), e.g.

F1�x�Q
2� �

1
2∑a

e2
a fa�x�Q

2� and F2�x�Q
2� � x∑

a
e2
a fa�x�Q

2� (2.2)

where ea is the electric charge on a quark.

The Mandelstam invariants ŝ, t̂ and û of the constituent scattering have a clear definition in
terms of the scattering angle θ� in the constituent c.m. system:

t̂ ��ŝ �1� cosθ��
2

and û��ŝ �1� cosθ��
2

� (2.3)

The transverse momentum of a scattered constituent is:

pT � p�T �

�
ŝ

2
sinθ� � (2.4)

and the scattered constituents c and d in the outgoing parton-pair have equal and opposite momenta
in the parton-parton (constituent) c.m. system. A naive experimentalist would think of Q2 ��t̂ for
a scattering subprocess and Q2 � ŝ for a Compton or annihilation subprocess.

Equation 2.1 gives the pT spectrum of outgoing parton c, which then fragments into a jet
of hadrons, including e.g. π0. The fragmentation function Dπ0

c �z� is the probability for a π0 to
carry a fraction z� pπ

0
�pc of the momentum of outgoing parton c. Equation 2.1 must be summed

over all subprocesses leading to a π0 in the final state weighted by their respective fragmentation
functions. In this formulation, fa�x1�, fb�x2� and Dπ0

c �z� represent the “long-distance phenom-
ena" to be determined by experiment; while the characteristic subprocess angular distributions,
Σab�cosθ�� (see Fig. 1) and the coupling constant, αs�Q2� � 12π

25 ln�Q2�Λ2�
, are fundamental predic-

tions of QCD [21, 22] for the short-distance, large-Q2, phenomena. When higher order effects are
taken into account, it is necessary to specify factorization scales µ for the distribution and frag-
mentation functions in addition to renormalization scale Λ which governs the running of αs�Q2�.
As noted above, the momentum scale Q2 � p2

T for the scattering subprocess, while Q2 � ŝ for a
Compton or annihilation subprocess, but the exact meaning of Q2 and µ2 tend to be treated as
parameters rather than as dynamical quantities.

Due to the fact (which was unknown in the 1970’s) that jets in 4π calorimeters at ISR ener-
gies or lower are invisible below

�
ŝ � ET � 25 GeV [25], there were many false claims of jet

observation in the period 1977-1982. This led to skepticism about jets in hadron collisions, par-
ticularly in the USA [26]. A ‘phase change’ in belief-in-jets was produced by one UA2 event at
the 1982 ICHEP in Paris [23] (Fig. 2), which, together with the first direct measurement of the
QCD constituent-scattering angular distribution, Σab�cosθ�� (Eq. 2.1), using two-particle correla-
tions [24], presented at the same meeting (Fig. 1), gave universal credibility to the pQCD descrip-
tion of high pT hadron physics [20, 27, 28].

4
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Figure 1: a) (left 3 panels) CCOR measurement [23, 24] of polar angular distributions of π 0 pairs with net
pT � 1 GeV/c at mid-rapidity in p-p collisions with

�
s � 62�4 GeV for 3 different values of ππ invariant

mass Mππ . b) (rightmost panel) QCD predictions for Σab�cosθ �� for the elastic scattering of gg, qg, qq �, qq,
and qq with αs�Q2� evolution.

Figure 2: UA2 jet event from 1982 ICHEP [23]. a) event shown in geometry of detector. b) “Lego" plot
of energy in calorimeter cell as a function of angular position of cell in polar (θ ) and azimuthal (Φ) angle
space.

3. Mid-rapidity pT spectra from p-p collisions—xT -scaling

Equation 2.1 leads to a general ‘xT -scaling’ form for the invariant cross section of high-pT

5
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particle production:

E
d3σ
d3p

�
1

pn�xT �
�
s�

T

F�xT � �
1

�
sn�xT �

�
s�
G�xT � � (3.1)

where xT � 2pT�
�
s. The cross section has two factors, a function F�xT � (G�xT �) which ‘scales’,

i.e. depends only on the ratio of momenta, and a dimensioned factor, 1�pn�xT �
�
s�

T (1�
�
sn�xT �

�
s�),

where n�xT �
�
s� equals 4 in lowest-order (LO) calculations, analogous to the 1�q4 form of Ruther-

ford Scattering in QED. The structure and fragmentation functions are all in the F�xT � (G�xT �)
term. Due to higher-order effects such as the running of the coupling constant, αs�Q2�, the evo-
lution of the structure and fragmentation functions, and the initial-state transverse momentum kT ,
n�xT �

�
s� is not a constant but is a function of xT ,

�
s. Measured values of n�xT �

�
s� for π0 in p-p

collisions are between 5 and 8 [5].
The scaling and power-law behavior of hard scattering are evident from the

�
s dependence

of the pT dependence of the p-p invariant cross sections. This is shown for nonidentified charged
hadrons, �h� � h���2, in Fig. 3a. At low pT � 1 GeV/c the cross sections exhibit a “thermal”
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Figure 3: a) (left) Ed3σ�pT ��d3p at mid-rapidity as a function of
�
s in p-p collisions [29]. b) (right)

log-log plot of
�
s�GeV�6�3�Ed3σ�d3p vs xT � 2pT�

�
s [30].

exp ��6pT � dependence, which is largely independent of
�
s, while at high pT there is a power-law

tail, due to hard scattering, which depends strongly on
�
s. The characteristic variation with

�
s at

high pT is produced by the fundamental power-law and scaling dependence of Eqs. 2.1, 3.1. This
is best illustrated by a plot of

�
s
n�xT �

�
s��E d

3σ
d3p

� G�xT � � (3.2)

as a function of xT , with n�xT �
�
s� � 6�3, which is valid for the xT range of the present RHIC

measurements (Fig. 3b). The data show an asymptotic power law with increasing xT . Data at
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a given
�
s fall below the asymptote at successively lower values of xT with increasing

�
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.
Although xT -scaling provides a rather general test of the validity QCD without reference to details,
the agreement of the PHENIX measurement of the invariant cross section for π0 production in p-p
collisions at

�
s� 200 GeV [30] with NLO pQCD predictions over the range 2�0� pT � 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] π 0 invariant cross section at mid-rapidity from p-p collisions at
�
s� 200 GeV,

together with NLO pQCD predictions from Vogelsang [31, 32]. a) The invariant differential cross section for
inclusive πÆ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets
of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.
c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation
functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization
error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, T AA,
for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured
semi-inclusive π 0 invariant yield in Au+Au central collisions at

�
sNN � 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the π0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with
corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-
scattering cross section is a pure power law for pT � 3 GeV/c. The invariant cross section for π0

production can be fit to the form
Ed3σ�dp3 ∝ p�nT (3.3)
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with n � 8�10� 0�05 [33]. It is important to emphasize that this n is different from the n�xT �
�
s�

in Eqs. 3.1, 3.2. The power n in Eq. 3.3 measures the pure power law shape of the cross section
at a fixed

�
s represented by the function G�xT � in Eqs. 3.1, 3.2, while n�xT �

�
s� represents the pT

dependence at fixed xT when
�
s is varied. Clearly, from Eq. 3.1 and Fig. 3b, the simple power n

(Eq. 3.3) is greater than or equal to n�xT �
�
s� (Eq. 3.2).

The steeply-falling power-law spectrum at a given
�
s has many important consequences for

single particle inclusive measurements of hard-scattering. The most famous properties in this re-
gard are the “Bjorken parent-child relationship” [34] and the “leading-particle effect”, which also
goes by the unfortunate name “trigger bias” [35, 34]. These will be discussed below in the section
on correlations. The power-law also makes the calculation of the inclusive photon spectrum from
the decay π0 � γ� γ very easy, but nevertheless very precise [36, 37], when expressed as the ratio
of photons from π0 to π0 at the same pT :

γ
π0

���
π0
�pT � � 2��n�1� � (3.4)

Similarly, the inclusive electron spectrum from internal or external conversion of these photons has
a simple formula when expressed as the ratio to π0 at the same pT :

e�

π0

����
π0

�pT � �
�e�� e��

2π0

����
π0

�pT � �

�
δ2

2
�

t
9
7X0

�
� 2

�n�1�2 � (3.5)

where δ2�2 � Dalitz (internal conversion) branching ratio per photon and t�X0 is the thickness of
the external converter in radiation lengths (X0) [40, 41].

4. Measurement of the medium effect in A+A collisions with hard-scattering by
comparison to baseline measurements in p-p and d+A collisions

Since hard scattering is point-like, with distance scale 1�pT � 0�1 fm, the cross section in
p+A (B+A) collisions, compared to p-p, should be simply proportional to the relative number of
possible point-like encounters [38], a factor of A (BA) for p+A (B+A) minimum bias collisions.
For semi-inclusive reactions in centrality class f at impact parameter b, the scaling is proportional
to TAB�b�, the overlap integral of the nuclear thickness functions [39], where �TAB	 f averaged over
the centrality class is:

�TAB	 f �

�
f
TAB�b�d

2b
�
f
�1� e�σNN TAB�b��d2b

�
�Ncoll	 f
σNN

� (4.1)

and where �Ncoll	 f is the average number of binary nucleon-nucleon inelastic collisions, with cross
section σNN , in the centrality class f . This leads to the description of the scaling for point-like pro-
cesses as binary-collision (or Ncoll) scaling. This description is convenient, but confusing, because
the scaling has nothing to do with the inelastic hadronic collision probability, it is proportional only
to the geometrical factor �TAB	 f (Eq. 4.1).

Effects of the nuclear medium, either in the initial or final state, may modify the point-like
scaling. This is shown rather dramatically in Fig. 4e where the Au+Au data are suppressed relative

8
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to the scaled p-p data by a factor of � 4� 5 for pT � 3 GeV/c. A quantitative evaluation of the
suppression is made using the “nuclear modification factor”, RAB, the ratio of the measured semi-
inclusive yield to the point-like scaled p-p cross section:

RAB �
dNP

AB

�TAB	 f �dσP
NN

�
dNP

AB

�Ncoll	 f �dNP
NN

(4.2)

where dNP
AB is the differential yield of a point-like process P in an A�B collision and dσPNN is the

cross section of P in an NN (usually p-p) collision. For point-like scaling, RAB � 1.
While the suppression of π0 at a given pT in Au+Au compared to the scaled p-p spectrum

may be imagined as a loss of these particles due to, for instance, the stopping or absorption of a
certain fraction of the parent partons in an opaque medium, it is evident from Fig. 4e that an equally
valid quantitative representation can be given by a downshift of the scaled p-p spectrum due to, for
instance, the energy loss of the parent partons in the medium—a particle with p�T in the scaled p-p
spectrum is shifted in energy by an amount S�pT � to a measured value pT � p�T � S�pT � in the
Au+Au spectrum [43]. The fact that the Au+Au and reference p-p spectra are parallel on Fig. 4e
provides graphical evidence that the fractional pT shift in the spectrum, S�pT ��pT is a constant for
pT � 3 GeV/c, which, due to the power law, results in a constant ratio of the π0 spectra RAA�pT �
as shown in Fig. 5.

)c(GeV/Tp
0 5 10 15 20

A
A

R

0

0.5

1

1.5

Au+Au 200GeV 0-10 %
PHENIX preliminary 0π

/2-+h+h

Figure 5: PHENIX measurement of nuclear modification factor RAA for identified π 0 and-non identified
charged hadrons �h��h���2 for central (0-10%) Au+Au collisions at

�
sNN � 200 GeV [42].

The nuclear modification factors are clearly different for π0 and �h��h���2 for pT � 6 GeV/c
in Fig. 5. Is it possible to tell whether one or both of these reactions obey QCD?

4.1 xT scaling in A+A collisions as a test of QCD

If the production of high-pT particles in Au+Au collisions is the result of hard scattering ac-
cording to pQCD, then xT scaling should work just as well in Au+Au collisions as in p-p collisions
and should yield the same value of the exponent n�xT �

�
s�. The only assumption required is that

the structure and fragmentation functions in Au+Au collisions should scale, in which case Eq. 3.2
still applies, albeit with a G�xT � appropriate for Au+Au. In Fig. 6, n�xT �

�
sNN� in Au+Au is

9
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derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3σ�dp3 at a
given xT for

�
sNN � 130 and 200 GeV, in each case. The π0’s exhibit xT scaling, with the same

Tx
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

)
T

n
(x

2

3

4
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7

8
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10

0π) for Tn(x

0-10%
60-80%

Tx
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

2

- + h+h) for   Tn(x

0-10%
60-80%

Figure 6: Power-law exponent n�xT � for π0 and h spectra in central and peripheral Au+Au collisions at�
sNN � 130 and 200 GeV [44].

value of n � 6�3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the
non-identified charged hadrons xT -scale with n � 6�3 for peripheral collisions only. Notably, the
�h��h���2 in Au+Au central collisions exhibit a significantly larger value of n�xT �

�
s�, indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT π0

production in peripheral and central Au+Au collisions and �h�� h���2 production in peripheral
Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation
functions that scale with xT , at least within the experimental sensitivity of the data. The fact that
the fragmentation functions scale for π0 in Au+Au central collisions indicates that the effective
energy loss must scale, i.e. S�pT ��pT � is constant, which is consistent with the parallel spectra
on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of �h��h���2 from xT scaling in central Au+Au collisions is indicative of and
consistent with the strong non-scaling modification of particle composition of identified charged-
hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2�0 � pT �
4�5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)
the p�π� and p̄�π� ratios as a function of pT increase dramatically to values �1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully
understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected
for point-like processes (Fig 7-(right)), while the π0 are suppressed, yet this effect is called the
‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as
due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie
evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both
same and away-side particles associated with both meson and baryon triggers [49] (see discussion
of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since
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there is direct and unbiased access to one of the interacting constituents, the photon, which can be
measured to high precision, and production is predominantly via a single subprocess [50]:

g�q� γ�q � (4.3)

with q� q̄� γ � g contributing on the order of 10%. However, the measurement is difficult ex-
perimentally due to the huge background of photons from π0 � γ� γ and η� γ� γ decays. This
background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating
direct-photon candidates which reconstruct to the invariant mass of a π0 when combined with
other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-
ditional energy within a cone of radius ∆r �

�
�∆η�2 ��∆φ�2 � 0�5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-
ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter (∆η�∆φ � 0�01�
0�01) required in order to operate in the high multiplicity environment of RHI collisions also pro-
vides excellent γ and π0 separation out to pT � 25 GeV/c. This will be useful in making spin-
asymmetry measurements of direct photons in polarized p-p collisions for determination of the
gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-
surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in
this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-
tion in p-p collisions at

�
s � 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT � 3 GeV/c. This data has resolved a longstanding
discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]
(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements
(Fig. 9-(left)) with a value n�xT �

�
s� � 5�0. This is closer to the asymptotic value of n�xT �

�
s� � 4
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than the π0 measurements in this range of pT �
�
s but is still not as close as the n�xT �

�
s� � 4�5

from jet measurements [55] at the Tevatron (Fig. 9-(left)).

A new measurement by STAR [56] of xT scaling of identified π�, p and p̄ in p-p collisions
at
�
s � 200 GeV in comparison to previous measurements (Fig. 10) gives n�xT �

�
s� � 6�8� 0�5

for pions in agreement with the PHENIX measurement [44] and provides the first measurement of
xT scaling of p and p̄ in p-p collisions, with n�xT �

�
s� � 6�5�1�0 in agreement with the value for

pions. This result shows that p and p̄ are produced by fragmentation of hard-scattered partons in
p-p collisions for pT � 2 GeV/c, which contradicts a recent proposal [57] to explain the ‘baryon
anomaly’ in A+A collisions as due to the possibility that protons and pions in the range 2�0 �
pT � 4�5 GeV/c in p-p collisions are produced by different mechanisms. As shown on the inset in
Fig. 10, the pion and proton spectra follow transverse mass scaling for mT � 2 GeV/c2 in both p-p
and d+Au collisions, suggesting the transition region from soft to hard process domination occurs
at pT � 2 GeV/c in these collision systems.

4.4 The state of jet-suppression measurements in Au+Au and d+Au collisions at RHIC

The state of RAA measurements at RHIC is beautifully summarized in Fig. 11 where the nuclear
modification factor is the same for π0 and η in Au+Au central collisions at

�
sNN � 200 GeV, both

are suppressed relative to point-like scaled p-p data by a factor of � 5 which appears to be constant
for pT � 4 GeV/c, while the direct photons are not suppressed at all. Since the direct photons do not
interact (strongly) with the medium, while the π0 and η are fragments of outgoing hard-scattered
partons which do interact with the medium, this plot proves that the suppression is a medium effect.
The curve on the plot shows a theoretical prediction [59] from a model of parton energy loss. The
model assumes an inital parton density dN�dy � 1200, which corresponds to an energy density
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Figure 9: (left) xT scaling [52] of direct photon data in p-p and p-p̄ collisions. The quantity plotted is
�
�
s�n�Ed3σ�dp3�xT � with n� 5�0. (right) xT scaling of jet cross sections measured in p-p̄ collisions by

CDF and D0 [55]. The quantity plotted is the ratio of p 4
T times the invariant cross section as a function of

xT for
�
s� 630 and 1800 GeV. Note that the theory curves are plotted in the same way in order to avoid as

much as possible uncertainties from the various parton distribution functions used.

of approximately 15 GeV/fm3. The theory curve appears to show a reduction in suppression with
increasing pT , while, as noted above, the data appear to be flat to within the errors, which clearly
could still be improved.

It is unreasonable to believe that the properties of the medium have been determined by a
theorist’s line through the data which constrains a few parameters of a model. The model and
the properties of the medium must be able to be verified by more detailed and differential mea-
surements. All models of medium induced energy loss [60] predict a characteristic dependence of
the average energy loss on the length of the medium traversed. This is folded into the theoretical
calculations with added complications that the medium expands during the time of the collision,
etc [61]. In an attempt to separate the effects of the density of the medium and the path length
traversed, PHENIX [33, 62] has studied the dependence of the π0 yield as a function of the an-
gle (∆φ ) to the reaction plane in Au+Au collisions (see Fig. 12). For a given centrality, variation
of ∆φ gives a variation of the path-length traversed for fixed initial conditions, while varying the
centrality allows the initial conditions to vary. Clearly these data reveal much more activity than
the reaction-plane-integrated RAA (Fig. 11) and merit further study by both experimentalists and
theorists.

The point-like scaling of direct photon production in Au+Au collisions indicated by the ab-
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Figure 11: Nuclear modification factor, RAA for direct photons, π 0 and η in Au+Au central collisions at�
sNN � 200 GeV [58]
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Figure 12: Nuclear modification factor, RAA�pT ��∆φ , of π0’s as a function of pT for several values of cen-
trality and angle to the reaction plane (∆φ ) in Au+Au collisions at

�
sNN � 200 GeV [33, 62]. The shaded

region around RAA � 1 indicates the systematic error due to the reaction plane resolution correction. The
arrows sketched on the ellipse indicate the different path-lengths traversed for centrality � 30�40% .

sence of suppression in Fig. 11 implies that there also should be no suppression of direct pho-
tons in d+A collisions. The further implication is that the gluon structure function in a nucleus
(gA�x�) scales like A, i.e. RAg �x� � gA�x��AgN�x� � 1, where gN�x� is the parton distribution func-
tion of gluons in a nucleon, since it is known from measurements of deeply inelastic scattering
of muons in nuclei that there is only a slight effect in the quark-structure functions, RAF2

�x� �
FA2 �x��AFN

2 �x���1 [38, 63, 64] (see Eq. 2.2). However, until now there has been no direct measure-
ment of the gluon structure function in nuclei. A first attempt in this direction has been presented
by the PHENIX collaboration as a measurement of RdA�pT � of direct photons in d+Au collisions
at
�
sNN � 200 GeV [65] (Fig. 13-(left)).
At mid-rapidity there is a simple relationship between RdA for direct photon production and

the structure function ratios [50]

RdA �
dσdA

γ �pT ��dpT
�2�A��dσ pp

γ �pT ��dpT
�

1
2

�
FA2 �xT �

AFN2 �xT �
�

gA�xT �
AgN�xT �

�
�

1
2

�
RAF2

�xT ��RAg�xT �
�

�

(4.4)
The measurement is consistent with RAg �x� � 1, but clearly the statistical errors must be improved by
an order of magnitude before the data can be compared in detail to the theoretical prediction [66, 67]
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(Fig. 13-(right)) which is used in all calculations for RHI collisions.

5. Correlations

As noted above (section 3.1), the steeply-falling power-law spectrum at a given
�
s has many

important and helpful consequences for single particle inclusive and two-particle correlation mea-
surements of hard-scattering. The most famous properties in this regard are the “Bjorken parent-
child relationship” [34] and the “leading-particle effect”, which also goes by the unfortunate name
“trigger bias” [35, 34].

5.1 Why single particle inclusive measurements accurately measure hard-scattering—the
leading-particle effect, also known as “trigger bias.”

Due to the steeply falling power-law transverse momentum ( p̂Tt ) spectrum of the scattered
parton, the inclusive single particle (e.g. π) pTt spectrum from jet fragmentation is dominated by
fragments with large zt , where zt � pTt� p̂Tt is the fragmentation variable. The joint probability for
a fragment pion, with pTt � zt p̂Tt , originating from a parton with p̂Tt � pT jet is:

d2σπ� p̂Tt �zt�
p̂Tt d p̂Tt dzt

�
dσq
p̂Tt d p̂Tt

�Dπ
q �zt �

� fq� p̂Tt ��Dπ
q �zt� � (5.1)

where fq� p̂Tt � represents the final-state scattered-parton invariant spectrum dσq� p̂Tt d p̂Tt and Dπ
q �zt�

represents the fragmentation function. The first term in Eq. 5.1 is the probability of finding a parton
with transverse momentum p̂Tt and the second term corresponds to the conditional probability that
the parton fragments into a particle of momentum pT � zt p̂Tt . A simple change of variables, p̂Tt �
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pTt�zt , d p̂Tt�dpTt 
zt � 1�zt , then gives the joint probability of a pion with transverse momentum pTt
which is a fragment with momentum fraction zt from a parton with p̂Tt � pTt�zt :

d2σπ�pTt �zt�
pTt dpTt dzt

� fq�
pTt
zt

��Dπ
q �zt��

1

z2
t

� (5.2)

The pTt and zt dependences do not factorize. However, the pTt spectrum may be found by in-
tegrating over all values of p̂Tt from pTt � p̂Tt �

�
s�2, which corresponds to values of zt from

xT � 2pT �
�
s to 1:

1
pTt

dσπ

dpTt
�

� 1

xT
fq�

pTt
zt

�Dπ
q �zt�

dzt
zt 2

� (5.3)

Also, for any fixed value of pTt one can evaluate the �zt�pTt �	, integrated over the parton spectrum:

�zt�pTt �	�
� 1
xT zt D

π
q �zt� fq�pTt�zt�

dzt
z2
t� 1

xT D
π
q �zt� fq�pTt�zt�

dzt
z2
t

� (5.4)

Since the observed π0 spectrum is a power-law for pTt � 3 GeV/c, one can deduce from Eq. 5.3
that the partonic p̂Tt spectrum is also a power-law with the same power—this is the ‘Bjorken parent-
child relationship” [34]. If we take:

dσq
p̂Tt d p̂Tt

� fq� p̂Tt � � Ap̂�nTt � (5.5)

then

1
pTt

dσπ

dpTt
�

� 1

xT
ADπ

q �zt��
pTt
zt

��n
dzt
z2
t

�
1
pnTt

� 1

xT
ADπ

q �zt�zt
n�2dzt � (5.6)

where the last integral depends only weakly on pTt due to the small value of xT . Eq. 5.6 also
indicates that the effective fragmentation function for a detected inclusive single particle (with
pTt ) is weighted upward in zt by a factor zn�2

t , where n is the simple power fall-off of the jet
invariant cross section (i.e. not the n�xT �

�
s� of Eq. 3.1). This is the so called “trigger bias”

although it doesn’t actually involve a hardware trigger. Any particle selected from an inclusive pTt
spectrum will most likely carry a large fraction of its parent parton transverse momentum; and it
was commonly accepted that this would define the hard scattering kinematics (ŝ in Eq. 2.4 or p̂Tt
in Eq. 5.1) so that the jet from the other outgoing parton in the hard-scattered parton-pair would be
unbiased [73, 11], so that its properties such as the fragmentation function and the fragmentation
transverse momentum could be measured.

5.1.1 Fragmentation Formalism—Single Inclusive

For an exponential fragmentation function,

D�z� � Be�bz � (5.7)
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calculation of the “trigger bias” and the “parent-child” factor is straightforward [35]. The mean
multiplicity of fragments in the jet is:

�m	�
� 1

0
D�z�dz�

B
b
�1� e�b� (5.8)

and these fragments carry the total momentum of the jet:

� 1

0
zD�z�dz�

B
b2 �1� e�b�1�b��� 1 � (5.9)

where the �z	 per fragment is:

�z	�
� 1

0 zD�z�dz� 1
0 D�z�dz

�
1
�m	 � (5.10)

The results are:

B�
b2

1� e�b�1�b�
� b2 (5.11)

�m	� b�1� e�b�
1� e�b�1�b�

� b � (5.12)

�z	� 1� e�b�1�b�
b�1� e�b� � 1

b
� (5.13)

The mean multiplicity of charged particles in the jet is �m	 � b, which is 8–10 at RHIC (see below).
Substitution of Eq. 5.7 into Eq. 5.6 for the pTt spectrum of the π gives:

1
pTt

dσπ

dpTt
�
AB
pnTt

� 1

xTt
dzt z

n�2
t exp�bzt � (5.14)

which can be written as:

1
pTt

dσπ

dpTt
�
AB
pnTt

1
bn�1 �Γ�n�1�bxTt ��Γ�n�1�b�� � (5.15)

where
Γ�a�x� �

� ∞

x
ta�1 e�t dt (5.16)

is the Complementary or upper Incomplete Gamma function, and Γ�a�0� � Γ�a� is the Gamma
function, where Γ�a� � �a�1�! for a an integer.

A reasonable approximation for small xT values is obtained by taking the lower limit of
Eq. 5.14 to zero and the upper limit to infinity, with the result that:

1
pTt

dσπ

dpTt
� Γ�n�1�

bn�1

AB
pnTt

� (5.17)

The parent-child ratio, the ratio of the number of π at a given pTt to the number of partons at the
same pTt is just given by the ratio of Eq. 5.17 to Eq. 5.5 at p̂Tt � pTt :

π0

q

����
π0

�pTt � �
BΓ�n�1�
bn�1 � �m	Γ�n�1�

bn�2 � (5.18)
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Similarly, the same substitutions in Eq. 5.4 for �zt�pTt �	 give:

�zt�pTt �	�
� 1
xTt
dzt zn�1

t exp�bzt� 1
xTt
dzt z

n�2
t exp�bzt

�
1
b

�Γ�n�bxTt ��Γ�n�b��
�Γ�n�1�bxTt ��Γ�n�1�b��

� n�1
b

� (5.19)

This shows the “trigger-bias” quantitatively. The �zt�pTt �	 of an inclusive single particle (e.g
π0) with transverse momentum pTt , which is a fragment with momentum fraction zt from a parent
parton with p̂Tt � pTt�zt (Eq 5.19), is n�1 times larger than the unconditional �z	 of fragmentation
(Eq. 5.13) [68]. The prevailing opinion from the early 1970’s until early this year was that although
the inclusive single particle (e.g. pizero) spectrum from jet fragmentation is dominated by trigger
fragments with large �zt	 � 0�7� 0�8 the away-jets should be unbiased and would measure the
fragmentation function, once the correction is made for �zt	 and the fact that the jets don’t exactly
balance pT due to the kT smearing effect [12].

5.2 Almost everything you want to know about jets can be found using 2-particle
correlations.

The outgoing jet-pair of hard-scattering obeys the kinematics of elastic-scattering (of partons)
in a parton-parton c.m. frame which is longitudinally moving with rapidity y� 1�2ln�x1�x2� in the
p-p c.m. frame. Hence, the jet-pair formed from the scattered partons should be co-planar with the
beam axis, with two jets of equal and opposite transverse momentum. Thus, the outgoing jet-pair
should be back-to-back in azimuthal projection. It is not necessary to fully reconstruct the jets in
order to measure their properties. In many cases two-particle correlations are sufficient to measure
the desired properties, and in some cases, such as the measurement of the net transverse momentum
of a jet-pair, may be superior, since the issue of the systematic error caused by missing some of
the particles in the jet is not-relevant. Many ISR experiments provided excellent 2-particle corre-
lation measurements [69]. However, the CCOR experiment [70] was the first to provide charged
particle measurement with full and uniform acceptance over the entire azimuth, with pseudorapid-
ity coverage �0�7 � η � 0�7, so that the jet structure of high pT scattering could be easily seen
and measured. In Fig. 14a,b, the azimuthal distributions of associated charged particles relative
to a π0 trigger with transverse momentum pTt � 7 GeV/c are shown for five intervals of associ-
ated particle transverse momentum pT . In all cases, strong correlation peaks on flat backgrounds
are clearly visible, indicating the di-jet structure which is contained in an interval ∆φ � �60Æ

about a direction towards and opposite the to trigger for all values of associated pT �� 0�3 GeV/c)
shown. The width of the peaks about the trigger direction (Fig. 14a), or opposite to the trigger
(Fig. 14b) indicates out-of-plane activity from the individual fragments of jets. The trigger bias
was directly measured from these data by reconstructing the trigger jet from associated charged
particles with pT � 0�3 Gev/c, within ∆φ � �60Æ from the trigger particle, using the algorithm
pT jet � pTt � 1�5∑ pT cos�∆φ�, where the factor 1.5 corrects the measured charged particles for
missing neutrals. The measurements of �ztrig	� �pTt�pT jet	 as a function of pTt for 3 values of

�
s

(Fig. 15-(left)) show a variation which is consistent with scaling as a function of xT , which was
not expected [71, 12]. Another observation [24], not much emphasized at the ISR but relevant to
recent observations at RHIC, is that the measured �ztrig	 is different for single particle inclusive
triggers and pair triggers (Fig. 15-(right)). A recent measurement by STAR at RHIC [72] gives
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Figure 14: a,b) Azimuthal distributions of charged particles of transverse momentum p T , with respect to
a trigger π 0 with pTt � 7 GeV/c, for 5 intervals of pT : a) (left-most panel) for ∆φ � �π�2 rad about the
trigger particle, and b) (middle panel) for ∆φ ��π�2 about π radians (i.e. directly opposite in azimuth) to
the trigger. The trigger particle is restricted to �η � � 0�4, while the associated charged particles are in the
range �η � � 0�7. c) (right panel) xE distributions (see text) corresponding to the data of the center panel.

�zt	 � 0�78�0�04 for inclusive pTt � 7�0 GeV/c at
�
s� 200 GeV.

Following the analysis of previous CERN-ISR experiments [73, 17], the away jet azimuthal
angular distributions of Fig. 14b, which were thought to be unbiased, were analyzed in terms of the
two variables: pout � pT sin�∆φ�, the out-of-plane transverse momentum of a track; and xE , where:

xE �
��pT 
�pTt

pTt 
2 �

�pT cos�∆φ�
pTt

� z
ztrig

(5.20)

ztrig � pTt�pT jet is the fragmentation variable of the trigger jet, and z is the fragmentation variable
of the away jet. Note that xE would equal the fragmenation fraction z of the away jet, for ztrig � 1,
if the trigger and away jets balanced transverse momentum. The xE distributions [70, 74] for the
data of Fig. 14b are shown in Fig. 14c and show the fragmentation behavior expected at the time,
e�6z � e�6xE �ztrig�. If the width of the away distributions (Fig. 14b) corresponding to the out of
plane activity were due entirely to jet fragmentation, then �
sin�∆φ�
	� �
 jTφ 
�pT 	 would decrease
in direct proportion to 1�pT , where jTφ is the component of �jT in the azimuthal plane, since the
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Figure 15: CCOR [24] measurement of 	z trig
 as a function of pTt : (left) for inclusive π 0’s and (right) for a
π0-pair trigger with mπ0π0 � 8 GeV/c2

jet fragmentation transverse momentum, �jT , should be independent of pT . This is clearly not the
case, as originally shown by the CCHK collaboration [17], which inspired Feynman, Field and Fox
(FFF) [11] to introduce,�kT , the transverse momentum of a parton in a nucleon. In this formulation,
the net transverse momentum of an outgoing parton pair is

�
2kT , which is composed of two or-

thogonal components,
�

2kTφ , out of the scattering plane, which makes the jets acoplanar, i.e. not
back-to-back in azimuth, and

�
2kTx , along the axis of the trigger jet, which makes the jets unequal

in energy. Originally, kT was thought of as having an ‘intrinsic’ part from confinement, which
would be constant as a function of x and Q2, and a part from NLO hard-gluon emission, which
would vary with x and Q2, however now it is explained as ‘resummation’ to all orders of QCD [75].

FFF [11, 76] gave the approximate formula to derive kT from the measurement of pout as a
function of xE :

�
pout
	2 � x2
E �2�
kTφ 
	2 � �
 jTφ 
	2�� �
 jTφ 
	2 � (5.21)

CCOR [77] used this formula to derive �
kTφ 
	 and �
 jTφ 
	 as a function of pTt and
�
s from the data

of Fig. 14b. This important result showed that �
 jTφ 
	 is constant, independent of pTt and
�
s, as

expected for fragmentation, but that �
kTφ 
	 varies with both pTt and
�
s, suggestive of a radiative,

rather than an intrinsic origin for kT . The analysis was repeated, this year, by PHENIX for p-p
collisions at

�
s� 200 GeV [10].

5.3 Why ‘everything’ became ‘almost everything’ due to a new understanding of xE
distributions

The new measurement of � jT 	, �kT 	 and the xE distribution, this year [10], led to several
complications and surprises, most notably that the shape of the xE distribution is not sensitive to
the fragmentation function. The complications concern the fact that while the effect of �zt	 could
be neglected at the ISR, where �zt	 � 1 due to the larger value of n, it had to be taken into account
at RHIC, with the result that the already complicated formula (Eq. 5.21) for deriving kT became
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even more complicated:

�zt�kT �xh�	
�	

k2
T



�x̂h�kT �xh�	 �

1
xh

�	
p2

out


�� j2Tφ


�1� x2

h� � (5.22)

where xh (x̂h) is the ratio of the associated particle (parton) transverse momentum to the trigger
particle (parton) transverse momentum:

xh � pTa
pTt

x̂h � x̂h�kT �xh�� p̂Ta
p̂Tt

� (5.23)

Note that the hadronic variable xh is measured on every event and that the partonic variable x̂h is a
function of both kT and xh (Fig. 16-(right)), as is the “trigger bias” �zt	 [10]. Thus, the solution of

Eq. 5.22 for
�	

k2
T



is an iterative process. The results [10] are shown in Fig. 16.
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Figure 16: (left)
��

k2
T

�
values in p-p collisions for associated charged particles with 1�4� pTa � 5 GeV/c

as a function of pTt of a π0 trigger (solid symbols) with statistical and systematic errors, measured by
PHENIX [10]. The CCOR masurement at

�
s � 62�4 GeV [77] (open triangles) is also shown. (right) 	z t


and 	x̂h
 as a function of pTt used in the PHENIX measurement, shown with statistical and systematic errors.

In order to evaluate �zt	 the fragmentation function must be known. Based on the longstanding
belief that the away jet was unbiased, PHENIX attempted to derive the fragmentation function from
the measured xE distribution.

5.3.1 Fragmentation Formalism—two-particle correlations from a jet-pair

First recall the joint probability for a fragment pion, with pTt � zt p̂Tt , originating from a parton
with p̂Tt (Eq. 5.1):

d2σπ� p̂Tt �zt �
p̂Tt d p̂Tt dzt

�
dσq
p̂Tt d p̂Tt

�Dπ
q �zt �

� fq� p̂Tt ��Dπ
q �zt� � (5.24)
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Here we make explicit that fq� p̂Tt � represents the kT -smeared final-state scattered-parton invariant
spectrum dσq� p̂Tt d p̂Tt and Dπ

q �zt� represents the fragmentation function. Due to the kT smearing,
the transverse momentum p̂Ta of the away parton in the hard-scattered parton-pair is less than the
transverse momentum of the trigger parton p̂Tt [10]. The probability that the parton with p̂Ta frag-
ments to a particle with pTa � za p̂Ta in interval dza is given by Dπ

q �za�. Thus, the joint probability
for a fragment pion with pTt � zt p̂Tt , originating from a parton with p̂Tt , and a fragment pion with
pTa � za p̂Ta , originating from the other parton in the hard-scattered pair with p̂Ta is:

d3σπ� p̂Tt �zt �za�
p̂Tt d p̂Tt dztdza

�
dσq
p̂Tt d p̂Tt

�Dπ
q �zt��Dπ

q �za� � (5.25)

where
za �

pTa
p̂Ta

�
pTa
x̂h p̂Tt

�
zt pTa
x̂h pTt

and x̂h � p̂Ta� p̂Tt (Eq. 5.23). Changing variables from p̂Tt , zt to pTt , zt as above and similarly from
za to pTa yields:

d3σπ

dpTt dztdpTa
�

1
x̂h pTt

dσq
d�pTt�zt�

Dπ
q �zt�D

π
q �
zt pTa
x̂hpTt

� (5.26)

where for integrating over zt or finding �zt	 for fixed pTt , pTa , the minimum value of zt is zmin
t �

2pTt�
�
s� xTt and the maximum value is:

zmax
t � x̂h

pTt
pTa

�
x̂h
xh

�

where x̂h�pTt � pTa� is also a function of kT (Eq. 5.23). Integrating over dzt in Eq. 5.26 gives the xE
distribution in the collinear limit, where pTa � xE pTt , and it was thought [10] that a simply parame-
terized fragmentation function could be extracted from a joint fit to the measured xE and inclusive
pTt distributions (Eq. 5.6). However, there were serious difficulties with convergence which took a
while to sort out. Eventually, the xE distributions were calculated from Eq. 5.26 using LEP mea-
surements for quark and gluon fragmentation functions, with shocking results (see Fig. 17)—the
xE distributions calculated with quark Dπq � exp��8�2 
 z� or gluon Dπ

g � exp��11�4 
 z� fragmen-
tation functions do not differ significantly! Clearly, the xE distributions are rather insensitive to the
fragmentation function of the away jet in contradiction to the conventional wisdom dating from the
early 1970’s.

The evidence of this explicit counter example led to an attempt to perform the integral of
Eq. 5.26 analytically which straightforwardly confirmed that the shape of the xE distribution is not
sensitive to the shape of the fragmentation function. However, it was found that xE distribution
is sensitive to x̂h, the ratio of the transverse momentum of the away-side jet ( p̂Ta) to that of the
trigger-side jet ( p̂Tt ). This can be put to use in A+A collisions to measure the relative energy loss
of the two jets from a hard-scattering which escape from the medium.

5.3.2 Analytical formula for the xE distribution

With a substitution of a power-law parton p̂Tt spectrum (Eq. 5.5) and an exponential fragmen-
tation function (Eq. 5.7), as in section 5.1.1, the integral of Eq. 5.26 over zt becomes:

d2σπ

dpTt dpTa
�
B2

x̂h

A
pnTt

� x̂h
pTt
pTa

xTt

dzt z
n�1
t exp��bzt �1� pTa

x̂h pTt
�� � (5.27)
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Figure 17: (left) xE distributions from PHENIX [10] in p-p collisions at
�
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of pTt . The solid and dashed lines represent calculations of the distribution from the integral of Eq. 5.26 for
quark (solid lines) and gluon (dashed lines) fragmentation functions based on exponential fits to the LEP
measurements [78, 79] shown on the right panel.

This is again an incomplete gamma function, if x̂h is taken to be constant as a function of zt for
fixed pTt , pTa :

d2σπ

dpTt dpTa
�
B2

x̂h

A
pnTt

1
b�n

�
Γ�n�b�xTt ��Γ�n�b�x̂h

pTt
pTa

�

�
� (5.28)

where b� is given by:
b� � b�1�

pTa
x̂hpTt

� � (5.29)

The conditional probability of the pTa distribution for a given pTt is the ratio of the joint prob-
ability Eq. 5.28 to the inclusive probability Eq. 5.15, or

dPπ
dpTa

����
pTt

�
B

bpTt x̂h

1
�1� pTa

x̂h pTt
�n

�
Γ�n�b�xTt ��Γ�n�b�x̂h

pTt
pTa

�
�

�Γ�n�1�bxTt ��Γ�n�1�b��
� (5.30)

and this answer is exact for the case of constant x̂h, with no assumptions other than a power law for
the parton p̂Tt distribution and an exponential fragmentation function. In the collinear limit, where,
pTa � xE pTt :

dPπ
dxE

����
pTt

�
1
x̂h

B
b

1
�1� xE

x̂h
�n

�
Γ�n�b�xTt ��Γ�n�b� x̂hxE �

�
�Γ�n�1�bxTt ��Γ�n�1�b��

� (5.31)

With the same approximation for the incomplete gamma functions used previously (Eq. 5.17),
namely taking the upper limit of the integral (Eq. 5.27) to infinity and the lower limit to zero, the
ratio of incomplete gamma functions in Eq. 5.31 becomes equal to n� 1 and the xE distribution
takes on a very simple and very interesting form:

dPπ
dxE

����
pTt

� �m	�n�1�
1
x̂h

1
�1� xE

x̂h
�n

� (5.32)
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where the only dependence on the fragmentation function is in the mean multiplicity of charged
particles in the jet �m	 � B�b� b. The dominant term in Eq. 5.32 is the Hagedorn function 1��1�
xE�x̂h�n so that Eq. 5.32 exhibits xE -scaling in the variable xE�x̂h. The shape of the xE distribution
is given by the power n of the partonic and inclusive single particle transverse momentum spectra
and does not depend on the exponential slope of the fragmentation function. However, the integral
of the xE distribution (from zero to infinity) is equal to �m	, the mean multiplicity of the unbiased
away-jet.

The reason that the xE distribution is not very sensitive to the fragmentation function is that the
integral over zt for fixed pTt and pTa (Eqs. 5.26, 5.27) is actually an integral over the jet transverse
momentum p̂Tt . However since both the trigger and away jets are always roughly equal and opposite
in transverse momentum, integrating over p̂Tt simultaneously integrates over p̂Ta , and thus also
integrates over the away jet fragmentation function. This can be seen directly by the presence of zt
in both the same and away fragmentation functions in Eq. 5.26, so that the integral over zt integrates
over both fragmentation functions simultaneously.

5.3.3 Why did we believe that the xE distribution measured the fragmentation function?

The seminal paper of Feynman, Field and Fox (FFF) [11] was especially influential in form-
ing the belief that the xE distribution measured the fragmentation function. To cite directly from
Ref. [11], p 25, “There is a simple relationship between experiments done with single-particle trig-
gers and those performed with jet triggers. The only difference in the opposite side correlation
is due to the fact that the ‘quark’, from which a single-particle trigger came, always has a higher
p� than the trigger (by factor 1�zt ). The away-side correlations for a single-particle trigger at p�
should be roughly the same as the away side correlations for a jet trigger at p�(jet)=p�(single
particle)��zt	”. This point is reinforced in the conclusions (p 59), “2. The distribution of away-
side hadrons from a jet trigger should be the same as that from a single particle trigger except
for a correction due to �zt	 (see Fig.23)” [which is shown as Fig. 18 below]. Another interesting
point is, “8. Because the quarks scatter elastically (no quantum number exchange - except perhaps
color), the away-side distribution of hadrons in pp collisions should be essentially independent of
the quantum numbers of the trigger hadron.”—i.e. the jets fragment independently. Note that in
FFF the notation is a�b� c�d (as in Eq. 2.1) where a�b�c�d are called ‘quarks’, so FFF call zt ,
zc.

This belief was thought to have been verified by measurements at the CERN-ISR which
showed (Fig. 19-(left)) that jet fragmentation functions in ν-p, e�e� and p-p reactions (CCOR
Fig. 14c [70, 74]) are the same, with the same dependence of the exponential slope b on ŝ (Fig. 19-
(right) [27].

5.3.4 A very interesting formula

Equation Eq. 5.32 (repeated below in a slightly different format) is very interesting.

dPπ
dy

����
pTt

� �m	�n�1�
1

�1� y�n
where y�

xE
x̂h

� (5.33)

It relates the ratio of the transverse momenta of the away and trigger particles, pTa�pTt � xh � xE ,
which is measured, to the ratio of the transverse momenta of the away to the trigger jet, p̂Ta� p̂Tt ,
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Figure 18: Figure 23 from FFF [11]

Figure 19: (left) Jet fragmentation functions from ν-p, e�e� and p-p reactions. (right) b-slopes from this
data, where ‘LPTH’ is an acronym for Large pT Hadron production [27].
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which can thus be deduced. Although derived for p-p collisions, Eq. 5.32 (5.33) should work
just as well in A+A collisions since the only assumptions are independent fragmentation of the
trigger and away-jets with the same exponential fragmentation function and a power-law parton
p̂Tt distribution. The only other (and weakest) assumption is that x̂h is constant for fixed pTt as
a function of xE . Thus in A+A collisions, Eq. 5.32 for the xE distribution provides a method of
measuring the ratio x̂h � p̂Ta� p̂Tt and hence the relative energy loss of the away to the same side jet
assuming that both jets fragment outside the medium with the same fragmentation function as in
p-p collisions.

5.3.5 Test of determination of x̂h from the xE distribution in p-p collisions

Figure 20: (left) Eq. 5.32 for n=8.1 divided by 	m
. The integral should be equal to 1. Curves are for
x̂h �1.0 (red), 0.8, 0.6, 0.4, 0.2 (blue), with intercept=7�1�x̂ h at xE � 0. (right)-PHENIX xE distribution for
5 � pTt � 6 GeV/c (Fig. 17-(left)) with Eq. 5.32 for x̂ h � 0�8 (black); STAR [72] xE distribution (Fig 25)
with Eq. 5.32 for x̂h � 1�0 (blue). Curves are from left panel multiplied by a factor of 1.41 to agree with
PHENIX data. STAR data have been multiplied by a factor of 0.6 to agree with this normalization.

A plot of Eq. 5.32 is shown in Fig. 20-(left) for n � 8�1 for various values of x̂h. Clearly, the
smaller the value of x̂h, the steeper is the xE distribution. However, all the curves in Fig. 20-(left)
are related by a simple scale transformation of Eq. 5.33: y� xE � x̂h y. In general, the values
of n and x̂h should be able to be determined from a simultaneous fit of the inclusive pTt spectrum
(Eq. 3.3 or 5.15) and the xE distribution (Eq. 5.31). On the other hand, when the value of n is
well determined from the inclusive pTt spectrum (e.g. see Fig. 4), Eq. 5.33 can just be scaled to
fit the measured xE distribution. This was done for the PHENIX p-p data [10] of Fig. 17-(left)
(5�0 � pTt � 6�0 GeV/c). The value of x̂h � 0�8 which gave the best “eyeball” agreement with the
data (Fig. 20-(right)) agrees with the value of x̂h determined independently from the kT -smearing
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analysis (Fig. 16) [10]. Similarly, for the STAR p-p data [72] (Fig. 25) excellent agreement is
found with x̂h � 1�0, for xE � 0�2. Thus, the method works for p-p collisions. Note that the evident
deviation of the STAR data from Eq. 5.32 for xE � 0�2 may be a limitation due to the simple
approximations or may be the result of the absence of corrections for decay-in-flight for the low
pTa particles (presumably π�) in the measurement. Also, as indicated in the caption of Fig. 20,
typically, Eq. 5.32 must be normalized in order to agree with the data.

5.4 2-particle correlation measurements in Au+Au collisions

One of the first and still most striking measurements of two-particle correlations in Au+Au
collisions was presented by STAR at the Quark Matter 2002 conference [80]. In Fig. 21, the
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Figure 21: STAR [80] conditional probability 1
Ntrig

dN
d∆φ of associated non-identified charged particles with

pTa in the range 2GeV�c � pTa � pTt per trigger particle with pTt between 6 and 8 GeV/c, all in the range
0 � �∆η � � 1�4 for central Au+Au collisions at

�
sNN � 200 GeV as a function of the azimuthal angle

difference ∆φ between the trigger and associated particles (solid circles). Non-jet background modulated by
elliptic flow v2 is shown as the blue curve. The sum of the measured p-p correlation plus the flow is shown
as the red histogram.

conditional probability—given a trigger particle with pTt between 6 and 8 GeV/c—of detecting an
associated particle with pTa in the range 2GeV�c � pTa � pTt is shown for central Au+Au collisions
at
�
sNN � 200 GeV as a function of the azimuthal angle difference of the two particles, ∆φ . The 2-

particle correlation function expressed as the conditional probability is the sum of the background
of particles randomly associated to the trigger, which is modulated by the common hydrodynamic
flow (represented by v2�pT �), plus the jet correlation function which was presumed to be the same
as that measured in p-p collisions [81]:

CAuAu2 �∆φ� �Cpp
2 �∆φ��B�1�2v2�pTt �v2�pTa�cos�2∆φ�� � (5.34)

The trigger-side correlation peak in central Au+Au collisions appears to be the same as that mea-
sured in p-p collisions (corrected by the small flow effect) but the away side jet correlation in
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Au+Au appears to have vanished, the data seem to be saturated by the small flow effect. This obser-
vation appears consistent with a large energy loss in the medium, or a medium that is opaque to the
propagation of high momentum partons, as originally indicated by the suppression observed [82]
in single particle inclusive measurements for pTt � 3 GeV/c (recall Fig. 5).

Although the apparent vanishing of the away jet in central Au+Au collisions is fantastic from
a public relations perspective, it is misleading from a scientific viewpoint as it suggests that the
away-jet was totally absorbed by the opaque medium. Later work presented by STAR at Quark
Matter 2004 [83, 72] with 4 � pTt � 6 GeV/c and 0�15 � pTa � 4 GeV/c showed that the away jet
didn’t disappear, it just lost energy and the away-side correlation peak became much wider than in
p-p collisions (Fig. 22).

Figure 22: STAR conditional probability 2-particle correlation function with flow-modulated background
subtracted: (left) Measurements in d+Au [84], p-p and Au+Au central [85] collisions at

�
sNN � 200 GeV

with 4 � pTt � 6 GeV/c and 2GeV�c � pTa � pTt ; (right) STAR data with same trigger pTt but with 0�15 �
pTa � 4 GeV/c [83].

Still later work presented by STAR at Quark Matter 2005 [86, 87], this past year, showed that
an away-side jet correlation peak with the same width as in p-p collisions re-appeared when pTt
was raised to the range 8� pTt � 15 GeV/c, with pTa � 3 GeV/c (Fig. 23). Clearly, the study of jet
phenomena by two-particle correlations in Au+Au collisions is much more complicated than the
same subject in p-p collisions and one can expect a long learning curve.

However, even at this early stage, there is one definitive result from 2-particle jet correlations
(Fig. 24) [49], in the sense that it casts serious doubt on the explanation of the ‘baryon anomaly’
(recall Fig. 7) by coalescence models [46, 47, 48]. Fig. 24-(left) shows the conditional probabil-
ity 2-particle azimuthal correlation functions, with the integrated associated particle yields/trigger
shown in Fig. 24-(right), for p-p, d+Au and AuAu collisions in which the trigger is either an iden-
tified meson or baryon in the range 2�5 � pTt � 4�0 GeV/c and the associated particles, in the
range 1�7� pTa � 2�5 GeV/c, are not identified. The yield of associated particles/per trigger on the
near side, from the same jet as the trigger hadron, is the same for meson and baryon triggers as a
function of centrality, except perhaps in the most central bin; and the same effect is seen for the
away-side yields. The red-dashed curve indicates the expected trigger-side conditional yield if all
the anomalous protons in Au+Au collisions were produced by coalescence. This shows that meson
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Figure 23: STAR conditional probability 2-particle azimuthal correlation histograms for charged hadron
triggers with 8 � pTt � 15 GeV/c, in minimum-bias d+Au, 20-40% Au+Au and 0-5% Au+Au collisions at�
sNN=200 GeV. pTa increases from top to bottom as indicated [86, 87].
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for triggers by identified mesons and baryons with 2�5� pTt � 4 GeV/c and associated non-identified charged
hadrons with 1�7� pTa � 2�5 GeV/c in collisions at

�
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the opposite azimuthal angle (Away Side), for Au+Au (full), d+Au (open) collisions at

�
sNN � 200� GeV.

Shaded boxes indicate centrality dependent systematic errors. An overall systematic error which moves all
the points by 12% is not shown. p-p data are shown for non-identified charged hadron triggers.
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and baryons at intermediate pT are produced by hard-processes with the same di-jet structure, and
not by soft coalescence.

5.4.1 Jet energy loss or jet absorption?

In section 5.3.4, I asserted that the ratio of the transverse momenta of the away-jet to the
trigger-jet, x̂h � p̂Ta� p̂Tt , and hence the relative energy loss of the away to the same side jets in
both p-p and A+A collisions could be determined from measurements of the xE distribution using
Eq. 5.32. A test of this method, which worked for p-p collisions, was presented in section 5.3.5.
Now I apply the method to Au+Au collisions.

Fig 25-(left) shows the STAR measurement [72] of the pTa distribution, given pTt , from the
data shown in Fig. 22-(right). In Fig. 25-(right), these measurements are plotted as an xE � pTa�pTt
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Figure 25: (left) STAR measurement [72] of transverse momentum (p�) distribution of associated charged
hadrons for a trigger charged hadron with 4 � pTt � 6 GeV/c for pp, Au+Au peripheral(80-40%), Au+Au
central (top 5%) collisions at

�
sNN � 200 GeV. a) near-side, b) away-side c,d) IAA=ratio of AA to pp p�

distributions for c) near side, d) away side. (right) data from (b) plotted as dP�dx E compared to Eq. 5.32
with x̂h � 1 for p-p, x̂h � 0�75 for Au+Au peripheral, and x̂ h � 0�48 for Au+Au central. The normalization
is the same as in Fig. 20-(left) for p-p collisions for both the data and the curve. The Au+Au data have been
multiplied by the same factor of 0.6 to maintain the relative normalization as published, but the curves are
normalized and x̂h-scaled by eye to agree with the measurements in the range 0�2� x E � 0�8.

distribution and shown together with Eqs. 5.32, 5.33, with n� 8�1, scaled to match the data, which
are beautifully consistent with no relative energy loss of the two jets in p-p collisions as noted above
(recall Fig. 20-(right)). By contrast, in Au+Au collisions, agreement with the data is obtained with
a ratio of away/trigger jet momenta of 0.75 in peripheral (40-80%) and 0.48 in central (0-5%)
collisions. This indicates a clear relative energy loss of the away jet compared to the trigger jet,
which increases with increasing centrality. However, the trigger jets in Au+Au are surface biased
by the falling power-law pT spectrum, an effect analogous to ‘trigger bias’—the jets which give
trigger particles of a given pTt are more likely to be produced near the surface and lose little energy,
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with p̂Tt close to pTt , than to have been produced deeper in the medium with a larger p̂Tt � pTt
and then have lost significant energy in getting to the surface. Because of the trigger-jet surface
bias, the away-jets must traverse the entire medium in order to be observed (except for the unlikely
cases when the jet-pair is tangential to the medium). Hence, the decrease in x̂h from 1.0 in p-
p collisions to 0.75 in Au+Au peripheral (40-80% ) collisions to 0.48 in Au+Au central (0-5%)
collisions indicates that the energy loss of the away-jet increases with distance traversed in the
medium.

I then tried to analyze the higher pTt STAR away-jet measurement [86, 87] by the same
method [88]. First, I plotted the data from both STAR measurements as xE distributions on the
same scale (Fig. 26). The measurements appear to disagree, both in normalization and shape, so I

Figure 26: STAR data [72] from Fig. 25 for d+Au, Au+Au (peripheral) and Au+Au central (0-5%) collisions
at
�
sNN � 200 GeV (filled points) compared to higher pTt STAR data [87, 88] (open points).

tried normalizing the higher pTt measurement [87] to agree with the lower pTt measurement [72],
which would be correct if xE scaling were valid in Au+Au collisions (see Fig. 27). The results are

Figure 27: Data from Fig. 26, with the higher pTt data normalized to agree with the lower pTt data for
xE � 0�45, together with the curves from Fig. 25 which fit the lower p Tt data.

quite interesting. It appears that the points at lower xE for the higher pTt measurement are consistent
with the shape of the lower pTt data for xE � 0�45, with a dramatic break and a flattening of the slope
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for xE � 0�5. This could be suggestive of a two-component distribution where some jets, which
pass through the medium, lose energy, while other jets, such as those emitted tangentially, punch
through without any energy loss. However it is difficult to understand why the punch-through of
tangential jets would depend on the trigger pTt . The comparison of the two STAR measurements
and the possibility of a dramatic break in the xE distribution would be greatly clarified if a few
lower xE points could be obtained for the higher pTt data.

Figure 28: (left) STAR higher pTt data [87, 88] as plotted in Fig. 26 together with curves of Eq. 5.32 adjusted
by eye to best represent the data. (right) STAR higher and lower p Tt data from Fig. 27 for Au+Au central
collisions together with PHENIX p-p data [10] from Fig. 20-(right).

It is also possible to compare Eq. 5.32 to the STAR higher pTt data without reference to the
lower pTt data (see Fig. 28-(left)). Here, another troubling effect is revealed. The best values of x̂h
are 1.30 for the d+Au data, 1.20 for the Au+Au peripheral (20-40%) data and 0.85 for the Au+Au
central (0-5%) data. Thus, to within the error of the simplistic “eyeball” scaling, the away-jet in
Au+Au central collisions with higher pTt , pTa also seems to lose about half it’s energy relative to
d+Au, consistent with the lower pTt measurement. However the xE slope for the higher pTt data
is much flatter than other measurements in p-p and d+Au collisions in the same pTt range (see
Fig. 28-(right) and Fig 29) as reflected in the anomalous value of x̂h � 1�30. In any model of jets
with kT smearing, x̂h must be � 1 as indicated by the other STAR and PHENIX data at RHIC
(Figs. 20-(right), 28-(right), 29-(right)). This clearly warrants further investigation.

5.5 Possible new effects revealed by correlation measurements in Au+Au collisions at RHIC

5.5.1 The ridge

Due to the large acceptance of the STAR detector, a near-side correlation in pseudo-rapidity
(η) covering the full STAR η acceptance was detected in addition to the flow modulated back-
ground and the near-side jet correlation [90]. As indicated schematically in Fig. 30, the width of
the ridge in the ∆φ direction is comparable to the near-side jet correlation and must be taken into
account in extracting the near-side jet yields. See Ref. [90] for details.

33



Review of hard scattering and jet analysis Michael J. Tannenbaum

E,nearx
0 0.2 0.4 0.6 0.8

E
  d

N
/d

x
tr

ig
1/

N

10
-1

1

10

< 6 GeV/c
T,trig

5 <p

< 7 GeV/c
T,trig

6 <p
< 8 GeV/c

T,trig
7 <p

Near side

E,farx
0 0.2 0.4 0.6 0.8

< 10 GeV/cT,trig8 <p

< 12 GeV/cT,trig10 <p

< 16 GeV/cT,trig12 <p

Far side
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5.5.2 Wide jets and/or Mach Cones–2 particle correlations

Measurements of non-identified charged hadron correlations by both PHENIX [91] and STAR [92]
in the “intermediate pT ” region (where the ‘baryon anomaly’ is found) are shown in Fig. 31. For
both PHENIX and STAR the trigger and associated particles have 2�5 � pTt � 4�0 GeV/c and
1�0 � pTa � 2�5 GeV/c but the PHENIX range in pseudorapidity is 
η 
 � 0�35 for both particles
while for STAR 
η 
� 0�7 for the trigger particle and 
η 
� 1 for the associated particles. Although
disagreeing in absolute value, presumably due to the different η acceptances, the PHENIX and
STAR measurements both exhibit a striking widening of the away-side correlation in going from
peripheral to central collisions, with a strong hint of a local minimum (dip) developing at ∆φ � π
for centralities less than � 60%. The existence of these local minima per se is not significant once
the systematic errors on v2 are taken into account but it is clear that all the away-side distributions
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Figure 31: Conditional yields of associated particles with 1�0 � pTa � 2�5 GeV/c per trigger particle with
2�5 � pTt � 4�0 GeV/c as a function of ∆φ for various centralities in Au+Au collisions at

�
sNN �200 GeV

after subtraction of the flow-modulated non-jet background: (left) PHENIX [91] data where both 1 and 2
unit bands are shown for the (rms) systematic uncertainty in v 2; (right) STAR [92] data with systematic
uncertainties indicated as histograms.

in the more central samples for both PHENIX and STAR have a very different shape than in the
most peripheral sample and all seem to exhibit a dip at ∆φ � π .

5.5.3 Deflected jets and/or Mach Cones–3 particle correlations

There are numerous explanations for the possibly two-peaked structure, roughly 1 radian away
from π , in the away-side distributions shown in Fig. 31, of which two are commonly discussed:
a ‘Mach cone’ [93] due to the away parton exceeding the speed of sound in the medium and
causing the QCD equivalent of a sonic-boom; or deflected jets, due to the strong interaction with the
medium which, e.g. for mid peripheral collisions where the overlap region has a large eccentricity,
might prevent directly back-to-back jets from penetrating through the medium (see Fig. 32-(left)).

Both STAR and PHENIX try to distinguish a Mach cone from deflected jets using 3-particle
correlations. In Fig. 32 STAR [94] studies the correlation of a trigger particle with 3 � pTt � 4
GeV/c to 2 associated particles with 1 � pTa � 2 GeV/c by making a plot of ∆φ1 versus ∆φ2,
the difference in azimuth of each associated particle with the trigger particle. In Fig. 32-(center) a
schematic of the expected results are shown on top for the case of deflected jets for which ∆φ1 �∆φ2

when both associated particles are on the away-side and where ∆φ � 0 when one or both of the
associated particles are on the trigger-side. The diagonal elongation near (π� π) is consistent with

kT smearing, since the typical fragmentation transverse momentum
�	

j2T

 � 0�6 GeV/c is much
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less than
�	

k2
T


 � 2�7 GeV/c [10], so that ∆φ1 � ∆φ2 �� π . For away-side particles which form
a cone roughly around the direction opposite to the trigger, there are off-diagonal as well as on-
diagonal ∆φ1 � ∆φ2 correlations (bottom). This is not obviously the best projection to understand
this problem as illustrated by the measurement in Fig. 32-(right) which is difficult to understand
but does appear to show off-diagonal activity.

PHENIX [95] defines a coordinate system for the correlation of two associated particles (1�0 �

pTa � 2�5 GeV/c) to a trigger particle (2�5 � pTt � 4�0 GeV/c) in which a conical correlation would
be directly visible (Fig 33b). The angle θ� represents π � θ �, where θ � would be the half-angle
of a cone centered opposite in azimuth to the trigger �pTt ; and the variable ∆φ� for this analysis
represents the ‘azimuthal’ angle around the cone. The data are displayed as a polar plot of ∆φ� as
a function of θ� (Fig. 33a,c,d). For a Mach cone, there should be a ‘δ -function’ at a fixed half-
angle θ� smeared by kT , and a uniform distribution in ∆φ� (Fig. 33c), while a deflected jet would
show correlations that are close in both θ� and ∆φ� and would favor orientations of ∆φ� in the
η direction, since the same-side and away-side jets are relatively uncorrelated in pseudorapidity
(Fig. 33a). The measurement shown in Fig. 33d seems to exhibit both types of activity.

6. Conclusion

Much has been learned, both in the 1970’s and recently at RHIC, by the study of jets and
hard-scattering via single particle, two-particle and 3-particle measurements in p-p and A+A
collisions. Clearly, for measurements in A+A collisions at RHIC, we are still at the early stages of
a long and interesting learning process.
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